References
- Choi, H. D., Youn, Y. K., & Shin, W. G. (2011). Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant foods for human nutrition (Dordrecht, Netherlands), 66(4), 363–369. https://doi.org/10.1007/s11130-011-0258-9
- Heidari, M., Chaboksafar, M., Alizadeh, M., Sohrabi, B., & Kheirouri, S. (2023). Effects of Astaxanthin supplementation on selected metabolic parameters, anthropometric indices, Sirtuin1 and TNF-α levels in patients with coronary artery disease: A randomized, double-blind, placebo-controlled clinical trial. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1104169
- Ito, N., Saito, H., Seki, S., Ueda, F., & Asada, T. (2018). Effects of Composite Supplement Containing Astaxanthin and Sesamin on Cognitive Functions in People with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Alzheimer’s disease : JAD, 62(4), 1767–1775. https://doi.org/10.3233/JAD-170969
- Ito, N., Seki, S., & Ueda, F. (2018). The Protective Role of Astaxanthin for UV-Induced Skin Deterioration in Healthy People-A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 10(7), 817. https://doi.org/10.3390/nu10070817
- Tominaga, K., Hongo, N., Fujishita, M., Takahashi, Y., & Adachi, Y. (2017). Protective effects of astaxanthin on skin deterioration. Journal of clinical biochemistry and nutrition, 61(1), 33–39. https://doi.org/10.3164/jcbn.17-35
- Wu, L. Y., Cheah, I. K., Chong, J. R., Chai, Y. L., Tan, J. Y., Hilal, S., Vrooman, H., Chen, C. P., Halliwell, B., & Lai, M. K. P. (2021). Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free radical biology & medicine, 177, 201–211. https://doi.org/10.1016/j.freeradbiomed.2021.10.019
- Beelman, R.B., Phillips, A.T., Richie, J.P., Jr, Ba, D.M., Duiker, S.W. and Kalaras, M.D. (2022), Health consequences of improving the content of ergothioneine in the food supply. FEBS Lett, 596: 1231-1240. https://doi.org/10.1002/1873-3468.14268
- Halliwell, B., Cheah, I. K., & Tang, R. M. Y. (2018). Ergothioneine – a diet-derived antioxidant with therapeutic potential. FEBS letters, 592(20), 3357–3366. https://doi.org/10.1002/1873-3468.13123
- Ba, D. M., Gao, X., Muscat, J., Al-Shaar, L., Chinchilli, V., Zhang, X., Ssentongo, P., Beelman, R. B., & Richie, J. P., Jr (2021). Association of mushroom consumption with all-cause and cause-specific mortality among American adults: prospective cohort study findings from NHANES III. Nutrition journal, 20(1), 38. https://doi.org/10.1186/s12937-021-00691-8
- Nehru, B., Bhalla, P., & Garg, A. (2006). Evidence for centrophenoxine as a protective drug in aluminium induced behavioral and biochemical alteration in rat brain. Molecular and cellular biochemistry, 290(1-2), 33–42. https://doi.org/10.1007/s11010-006-9125-7
- Voronina, T.A., Garibova, T.L., Trofimov, S.S., Sopyev, Z.A., Petkov, V.D., & Lazarova, M.B. (1991). Comparative studies on the influence of ONK (N(5-hydroxynicotinoil) glutamic acid), piracetam and meclofenoxate on the learning- and memory-impairing effect of scopolamine, clonidine, and methergoline. Acta physiologica et pharmacologica Bulgarica, 17 4, 8-16.
- Liao, Y., Wang, R., & Tang, X. C. (2004). Centrophenoxine improves chronic cerebral ischemia induced cognitive deficit and neuronal degeneration in rats. Acta pharmacologica Sinica, 25(12), 1590–1596.
- Mehrotra, A., Kanwal, A., Banerjee, S. K., & Sandhir, R. (2015). Mitochondrial modulators in experimental Huntington’s disease: reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiology of aging, 36(6), 2186–2200. https://doi.org/10.1016/j.neurobiolaging.2015.02.004
- Singh, S., Mishra, A., Srivastava, N., Shukla, R., & Shukla, S. (2018). Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats. Molecular neurobiology, 55(1), 583–602. https://doi.org/10.1007/s12035-016-0293-5
- Montgomery, S. A., Thal, L. J., & Amrein, R. (2003). Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. International clinical psychopharmacology, 18(2), 61–71. https://doi.org/10.1097/00004850-200303000-00001
- Malaguarnera, M., Gargante, M. P., Cristaldi, E., Colonna, V., Messano, M., Koverech, A., Neri, S., Vacante, M., Cammalleri, L., & Motta, M. (2008). Acetyl L-carnitine (ALC) treatment in elderly patients with fatigue. Archives of gerontology and geriatrics, 46(2), 181–190. https://doi.org/10.1016/j.archger.2007.03.012
- Sadowska A. M. (2012). N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Therapeutic advances in respiratory disease, 6(3), 127–135. https://doi.org/10.1177/1753465812437563
- De Benedetto, F., Aceto, A., Dragani, B., Spacone, A., Formisano, S., Pela, R., Donner, C. F., & Sanguinetti, C. M. (2005). Long-term oral n-acetylcysteine reduces exhaled hydrogen peroxide in stable COPD. Pulmonary pharmacology & therapeutics, 18(1), 41–47. https://doi.org/10.1016/j.pupt.2004.09.030
- Stav, D., & Raz, M. (2009). Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest, 136(2), 381–386. https://doi.org/10.1378/chest.09-0421
- Imai, S., & Guarente, L. (2014). NAD+ and sirtuins in aging and disease. Trends in cell biology, 24(8), 464–471. https://doi.org/10.1016/j.tcb.2014.04.002
- Cantó, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez-Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A. A., & Auwerx, J. (2012). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell metabolism, 15(6), 838–847. https://doi.org/10.1016/j.cmet.2012.04.022
- Chi, Y., & Sauve, A. A. (2013). Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Current opinion in clinical nutrition and metabolic care, 16(6), 657–661. https://doi.org/10.1097/MCO.0b013e32836510c0
- Kumar, P., Liu, C., Hsu, J. W., Chacko, S., Minard, C., Jahoor, F., & Sekhar, R. V. (2021). Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clinical and translational medicine, 11(3), e372. https://doi.org/10.1002/ctm2.372
- Kumar, P., Osahon, O., Vides, D. B., Hanania, N., Minard, C. G., & Sekhar, R. V. (2021). Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants (Basel, Switzerland), 11(1), 50. https://doi.org/10.3390/antiox11010050
- Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., Angelini, L., Fuhrmann-Stroissnigg, H., Xu, M., Ling, Y. Y., Melos, K. I., Pirtskhalava, T., Inman, C. L., McGuckian, C., Wade, E. A., Kato, J. I., Grassi, D., Wentworth, M., Burd, C. E., Arriaga, E. A., Ladiges, W. L., Tchkonia, T., Kirkland, J. L., … Niedernhofer, L. J. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36, 18–28. https://doi.org/10.1016/j.ebiom.2018.09.015
- Rahmani, A. H., Almatroudi, A., Allemailem, K. S., Khan, A. A., & Almatroodi, S. A. (2022). The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. Molecules (Basel, Switzerland), 27(24), 9009. https://doi.org/10.3390/molecules27249009
- Imran, M., Saeed, F., Gilani, S. A., Shariati, M. A., Imran, A., Afzaal, M., Atif, M., Tufail, T., & Anjum, F. M. (2020). Fisetin: An anticancer perspective. Food science & nutrition, 9(1), 3–16. https://doi.org/10.1002/fsn3.1872
- Prasher, P., Sharma, M., Singh, S. K., Gulati, M., Chellappan, D. K., Rajput, R., Gupta, G., Ydyrys, A., Kulbayeva, M., Razis, A. F. A., Modu, B., Sharifi-Rad, J., & Dua, K. (2023). Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1164477
- Wang, I. F., Tsai, K. J., & Shen, C. K. (2015). Spermidine on neurodegenerative diseases. Cell cycle (Georgetown, Tex.), 14(5), 697–698. https://doi.org/10.1080/15384101.2015.1006551
- Banerjee, S., & Poddar, M. K. (2020). Carnosine research in relation to aging brain and neurodegeneration: A blessing for geriatrics and their neuronal disorders. Archives of gerontology and geriatrics, 91, 104239. Advance online publication. https://doi.org/10.1016/j.archger.2020.104239
- Reddy, V. P., Garrett, M. R., Perry, G., & Smith, M. A. (2005). Carnosine: a versatile antioxidant and antiglycating agent. Science of aging knowledge environment : SAGE KE, 2005(18), pe12. https://doi.org/10.1126/sageke.2005.18.pe12
- Tan, W. F., Cao, X. Z., Wang, J. K., Lv, H. W., Wu, B. Y., & Ma, H. (2010). Protective effects of lithium treatment for spatial memory deficits induced by tau hyperphosphorylation in splenectomized rats. Clinical and experimental pharmacology & physiology, 37(10), 1010–1015. https://doi.org/10.1111/j.1440-1681.2010.05433.x
- King, M. K., Pardo, M., Cheng, Y., Downey, K., Jope, R. S., & Beurel, E. (2014). Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacology & therapeutics, 141(1), 1–12. https://doi.org/10.1016/j.pharmthera.2013.07.01